Review of Research Trends: Process Parametric Optimization of Wire Electrical Discharge Machining (WEDM)

نویسنده

  • D. Sudhakara
چکیده

The wire cut EDM is one of the most important machining process for technologists in the field of moulds, dies and in precision manufacturing .The wire electrical discharge machining producing parts with in very short period , the demand over the time increases extensively .So that an extensive research work has been carried out to optimize the parameters of the process by eliminating trial and error cost for the selection of parameters during machining of materials, for getting optimum responses like best surface finish, metal removal rate, with good dimensional accuracy and with retaining the physical and chemical properties of parent material. The present paper mainly explores the review of the research work carried out by various research workers with various methodologies and how the output parameters of the WEDM like surface finish , metal removal rate, dimensional accuracy and HAZ were affected by the input process parameters like on time, off time, voltage, wire tension, wire feed, dielectric pressure. current, etc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent Knowledge Based System Approach for Optimization of Design and Manufacturing Process for Wire-Electrical Discharge Machining

Wire electrical discharge machining (WEDM) is a method to cut conductive materials with a thin electrode that follows a programmed path. The electrode is a thin wire. Typical diameters range from .004" - .012" (.10mm - .30mm) although smaller and larger diameters are available. WEDM is a thermal machining process capable of accurately machining parts with varying hardness or complex shapes. WED...

متن کامل

Intelligent Knowledge Based System Approach for Optimization of Design and Manufacturing Process for Wire-Electrical Discharge Machining

Wire electrical discharge machining (WEDM) is a method to cut conductive materials with a thin electrode that follows a programmed path. The electrode is a thin wire. Typical diameters range from .004" - .012" (.10mm - .30mm) although smaller and larger diameters are available. WEDM is a thermal machining process capable of accurately machining parts with varying hardness or complex shapes. WED...

متن کامل

An experimental analysis and optimization of machining rate and surface characteristics in WEDM of Monel-400 using RSM and desirability approach

In the present work, an experimental investigation on wire electrical discharge machining (WEDM) of Monel-400 has been presented. Monel-400 is a nickel–copper-based alloy, mostly employed in ships and corrosion-resisting applications. Four input WEDM parameters namely discharge current (Ip), pulse-on time (Ton), pulse-off time (Toff) and servo voltage (SV) have been investigated and modeled for...

متن کامل

Multi-objective optimization in WEDM of D3 tool steel using integrated approach of Taguchi method & Grey relational analysis

In this paper, wire electrical discharge machining of D3 tool steel is studied. Influence of pulse-on time, pulse-off time, peak current and wire speed are investigated for MRR, dimensional deviation, gap current and machining time, during intricate machining of D3 tool steel. Taguchi method is used for single characteristics optimization and to optimize all four process parameters simultaneous...

متن کامل

Optimization of Process Parameter of Wire Electrical Discharge Machine by Response Surface Methodology on Inconel-600

in the present paper, the study has been made to optimize the process parameters during machining of Inconnel-600 by wire electrical discharge machining (WEDM) using response surface methodology (RSM). Four input process parameters of WEDM (namely Peak Current (IP), Pulse-On time (TON), Pulse-Off time (TOFF) and Wire Feed rate (WF)) were chosen as variables to study the process performance in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014